The course of the enigmatic iterative use of a polyketide synthase module was deduced from targeted domain inactivation in the aureothin assembly line. Mutational analyses revealed that the N-terminus of AurA is not involved in the iteration process, ruling out an ACP-ACP shuttle. Furthermore, an AurA(KS°, ACP°)-AurA(AT(0)) heterodimer proved to be nonfunctional, whereas aureothin production was restored in a ΔaurA mutant complemented with AurA(KS°)-AurA(ACP°). This finding supports a model according to which the ACP-bound polyketide intermediate is transferred back to the KS domain on the opposite PKS strand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja304454rDOI Listing

Publication Analysis

Top Keywords

iterative polyketide
8
polyketide synthase
8
synthase module
8
interchenar retrotransfer
4
retrotransfer aureothin
4
aureothin intermediates
4
intermediates iterative
4
module course
4
course enigmatic
4
enigmatic iterative
4

Similar Publications

Background: The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes.

View Article and Find Full Text PDF

Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.

View Article and Find Full Text PDF

Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS) / non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns.

View Article and Find Full Text PDF

In nature, thousands of diverse and bioactive polyketides are assembled by a family of multifunctional, "assembly line" enzyme complexes called polyketide synthases (PKS). Since the late 20th century, there have been several attempts to decode, rearrange, and "reprogram" the PKS assembly line to generate valuable materials such as biofuels and platform chemicals. Here, the first module from () PKS12, an unorthodox, "modularly iterative" PKS, was modified and repurposed toward the formation of 2-methyl Guerbet lipids, which have wide applications in industry.

View Article and Find Full Text PDF
Article Synopsis
  • Many high-value molecules are made by multifunctional enzymes found in Actinobacteria, which produce reactive intermediates.
  • This study focuses on an iterative polyketide synthase (iPKS) from the marine microorganism PR4.
  • The iPKS can create long polyenes, reaching up to C22 nonaenes, indicating potential for new chemical and biological discoveries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!