System identification techniques applied to experimental human-in-the-loop data provide an objective test of three alternative control-theoretical models of the human control system: non-predictive control, predictive control, and intermittent predictive control. A two-stage approach to the identification of a single-input single-output control system is used: first, the closed-loop frequency response is derived using the periodic property of the experimental data, followed by the fitting of a parametric model. While this approach is well-established for non-predictive and predictive control, it is here used for the first time with intermittent predictive control. This technique is applied to data from experiments with human volunteers who use one of two control strategies, focusing either on position or on velocity, to manually control a virtual, unstable load which requires sustained feedback to maintain position or low velocity. The results show firstly that the non-predictive controller does not fit the data as well as the other two models, and secondly that the predictive and intermittent predictive controllers provide equally good models which cannot be distinguished using this approach. Importantly, the second observation implies that sustained visual manual control is compatible with intermittent control, and that previous results suggesting a continuous control model for the human control system do not rule out intermittent control as an alternative hypothesis. Thirdly, the parameters identified reflect the control strategy adopted by the human controller.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00422-012-0503-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!