Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants.

Plant Physiol

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.

Published: September 2012

Agrobacterium tumefaciens is a unique plant pathogenic bacterium renowned for its ability to transform plants. The integration of transferred DNA (T-DNA) and the formation of complex insertions in the genome of transgenic plants during A. tumefaciens-mediated transformation are still poorly understood. Here, we show that complex extrachromosomal T-DNA structures form in A. tumefaciens-infected plants immediately after infection. Furthermore, these extrachromosomal complex DNA molecules can circularize in planta. We recovered circular T-DNA molecules (T-circles) using a novel plasmid-rescue method. Sequencing analysis of the T-circles revealed patterns similar to the insertion patterns commonly found in transgenic plants. The patterns include illegitimate DNA end joining, T-DNA truncations, T-DNA repeats, binary vector sequences, and other unknown "filler" sequences. Our data suggest that prior to T-DNA integration, a transferred single-stranded T-DNA is converted into a double-stranded form. We propose that termini of linear double-stranded T-DNAs are recognized and repaired by the plant's DNA double-strand break-repair machinery. This can lead to circularization, integration, or the formation of extrachromosomal complex T-DNA structures that subsequently may integrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440224PMC
http://dx.doi.org/10.1104/pp.112.200212DOI Listing

Publication Analysis

Top Keywords

t-dna structures
12
t-dna
9
formation complex
8
complex extrachromosomal
8
extrachromosomal t-dna
8
tumefaciens-infected plants
8
integration transferred
8
transgenic plants
8
extrachromosomal complex
8
plants
5

Similar Publications

Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.

View Article and Find Full Text PDF

Acting as an extremely promising fungal pesticide, Metarhizium rileyi exhibits robust insecticidal activity against Lepidoptera pests, particularly the larvae. Though there is a slight delay in efficacy, biopesticides offer salient advantages over traditional chemical pesticide especially in environmental safety, cyclic infection and resistant inhibition. In this study, an exterior T-DNA was randomly inserted into the genome of M.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a new nanopore sensor that uses a DNA walker and an autocatalytic reaction to detect DNA methyltransferases (MTases), important for understanding gene regulation and cancer.
  • The sensor operates by methylating and cleaving a hairpin DNA structure in the presence of Dam MTase, triggering a series of reactions that amplify the signal and produce numerous DNA nanowires.
  • This enhanced detection mechanism can identify extremely low levels of Dam MTase and can be adapted for M.SssI MTase, showcasing its potential in advanced biosensing applications.
View Article and Find Full Text PDF

The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting.

View Article and Find Full Text PDF

Dwarf or semidwarf plant structures are well suited for intensive farming, maximizing yield, and minimizing labor costs. Watermelon (Citrullus lanatus) is classified as an annual vine plant with elongated internodes, yet the mechanism governing watermelon dwarfing remains unclear. In this study, a compact watermelon mutant dwarf, induced by the insertion of transferred DNA (T-DNA), was discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!