In the last three decades, the incidence of melanoma has increased worldwide and no effective treatment modalities have been developed yet. All-trans retinoic acid (ATRA) and polyinosinic:polycytidylic acid (polyI:C) are strong inducers of toll-like receptor 3 (TLR3) and MDA5 expression, and polyI:C-induced TLR3 and MDA5 signaling specifically causes cell death in melanoma cells in vitro. We addressed the question of whether ATRA pretreatment could enhance the efficacy of polyI:C and, if so, would ATRA have any additional effects on this process. We found that the combined treatment of human melanoma cells with ATRA and polyI:C strongly increased the expression of TLR3 and MDA5 in both WM35 and WM983A cells associated with significantly higher mRNA and secreted levels of interferon β (IFNβ), CXCL1, CXCL8/IL-8, CXCL9, and CXCL10 than cells treated with either ATRA or polyI:C. Silencing of MDA5 by siRNA moderately affected IFNβ secretion, whereas TLR3 knockdown interfered with both CXCL chemokine and IFNβ production. Furthermore, the supernatants of ATRA+polyI:C-activated cultures increased the migration of both human monocyte-derived macrophages and CD1a dendritic cells significantly as compared with the supernatants of cells treated with either ATRA or polyI:C, and this effect occurred in a TLR3-dependent manner. In conclusion, consecutive treatment with ATRA and polyI:C results in strong, TLR3/MDA5-mediated chemokine and IFN responses in cultured human melanoma cells, which triggers a functional migratory response in professional antigen-presenting cells. This novel mode of concomitant activation may represent a more efficient treatment option for future melanoma therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CMR.0b013e328357076c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!