Kinematic diffraction is well suited for a mathematical approach via measures, which has substantially been developed since the discovery of quasicrystals. The need for further insight emerged from the question of which distributions of matter, beyond perfect crystals, lead to pure point diffraction, hence to sharp Bragg peaks only. More recently, it has become apparent that one also has to study continuous diffraction in more detail, with a careful analysis of the different types of diffuse scattering involved. In this review, we summarise some key results, with particular emphasis on non-periodic structures. We choose an exposition on the basis of characteristic examples, while we refer to the existing literature for proofs and further details.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cs35120j | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:
In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Applied Materials Science, Uppsala University, SE-751 03 Uppsala, Sweden.
In additive manufacturing, the presence of residual stresses in produced parts is a well-recognized phenomenon. These residual stresses not only elevate the risk of crack formation but also impose limitations on in-service performance. Moreover, it can distort printed parts if released, or in the worst case even cause a build to fail due to collision with the powder scraper.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain.
The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia. Electronic address:
Chem Sci
December 2024
Materials Innovation Factory, Department of Chemistry, University of Liverpool 51 Oxford Street L7 3NY Liverpool UK
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!