The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478260 | PMC |
http://dx.doi.org/10.4161/cam.20832 | DOI Listing |
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.
Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).
Soft Matter
January 2025
Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.
Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.
Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!