After traumatic spinal cord injury, grossly injured blood vessels leak blood and fluid into the parenchyma, leading to a large cystic cavity. Fibroblast growth factor-2 (FGF2) can reduce immediate vasoconstriction of vessels in the tissue surrounding the primary injury and promote angiogenesis. A localized delivery system would both achieve restricted delivery of FGF2 to the spinal cord and limit possible systemic effects such as mitogenesis. To enhance the endogenous angiogenic response after spinal cord injury, FGF2 was encapsulated in poly(lactide-co-glycolide) (PLGA) nanoparticles which were embedded in a biopolymer blend of hyaluronan and methylcellulose (HAMC) and then injected into the intrathecal space. Treatment began immediately after a 26 g clip compression spinal cord injury in rats and consisted of intrathecal delivery of FGF2 from the HAMC/PLGA/FGF2 composite. Control animals received intrathecal HAMC loaded with blank nanoparticles, intrathecal HAMC alone or intrathecal artificial cerebrospinal fluid alone. Sustained and localized delivery of FGF2 from composite HAMC/PLGA/FGF2 achieved higher blood vessel density in the dorsal horns 28 days post-injury, due to either greater angiogenesis near the epicenter of the injury or vasoprotection acutely after spinal cord injury. Importantly, delivery of FGF2 from composite HAMC/PLGA/FGF2 did not produce proliferative lesions that had been previously reported for FGF2 delivered locally using a minipump/catheter. These results suggest that localized and sustained delivery with composite HAMC/PLGA/FGF2 is an excellent system to deliver biomolecules directly to the spinal cord, thereby circumventing the blood spinal cord barrier and avoiding systemic side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000339589 | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFSci Rep
December 2024
Radiology Department, Children's Hospital of Chongqing Medical University, Yuzhong District Zhongshan 2 Road 136#, Chongqing, 400014, China.
This study aimed to identify imaging risk factors for spinal cord injury without radiologic abnormalities (SCIWORA) in children. We retrospectively analyzed the medical records and magnetic resonance imaging (MRI) findings of children with SCIWORA admitted to our hospital between January 1, 2012, and September 30, 2022. Univariate and binary logistic regression analyses were used to evaluate the prognostic impact of various factors including MRI type, maximum cross-sectional area of spinal cord injury, injury length, injury signal intensity ratio.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
J Pediatr Surg
December 2024
Children's Hospital New Orleans, Department of Surgery, New Orleans LA 70118, USA; Louisiana State University Health Sciences Center, Department of Surgery, Division of Pediatric Surgery, New Orleans LA 70112, USA. Electronic address:
Introduction: Traumatic injury is the leading cause of pediatric mortality and morbidity in the United States. While behavioral impairments of children after traumatic brain injury (TBI) have been described, outcomes following traumatic spinal cord injury (SCI) and multi-trauma (MT) are less known. We aimed to address the prevalence of behavioral and neuropsychiatric disorders in pediatric and adolescent trauma patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!