To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2012.06.021 | DOI Listing |
Colloids Surf B Biointerfaces
January 2013
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!