AI Article Synopsis

  • The study investigates new methods for collecting and transferring whole animal tissue samples for MALDI mass spectrometry imaging (MSI) to enhance analysis quality, especially of small or delicate tissues.
  • It proposes using double-sided adhesive conductive carbon tape during the sectioning of CMC-embedded adult rat tissues, ensuring that the samples can be analyzed on various MASI instruments without compromising detection quality of small molecules.
  • The research reveals that this tape not only supports the integrity of heat-sensitive tissues for successful sectioning but also allows for effective mapping of larger molecules, highlighting its utility in studying compound distribution and preventing degradation in samples.

Article Abstract

Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2012.07.006DOI Listing

Publication Analysis

Top Keywords

msi analysis
12
conductive carbon
8
carbon tape
8
tissue sections
8
sections maldi
8
maldi imaging
8
maldi
5
analysis
5
msi
5
conductive
4

Similar Publications

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Background: The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).

Objective: This study aimed to explore the role of ZP3 in PAAD.

Methods: A comparative analysis of ZP3 gene expression was performed to discern differences between various types of cancer and PAAD, leveraging data sourced from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

Background: Increasing evidence shows that many lipids play important roles in the pathogenesis of Alzheimer's disease (AD), including Aβ plaque formation. Of note, the greatest genetic risk of late onset AD, apolipoprotien E4 (APOE4), plays a major role in lipid transport. However, the profile of lipids that play a role in AD is poorly understood.

View Article and Find Full Text PDF

Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, -Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues.

Anal Chem

January 2025

Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.

Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!