A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. | LitMetric

AI Article Synopsis

  • Mitochondrial dysfunction is a major issue after ischemic events, and this study aimed to see if mild hypothermia can reduce reactive oxygen species (ROS) production before such events.
  • During experiments with isolated rat heart cells and rabbit heart mitochondria, it was found that cooling to 32°C significantly decreased ROS generation and improved mitochondrial function compared to normal temperatures.
  • The findings suggest that applying mild hypothermia quickly during ischemia can protect heart cells by lowering oxidative stress and maintaining mitochondrial health.

Article Abstract

Background: Mitochondrial dysfunction is critical following ischemic disorders. Our goal was to determine whether mild hypothermia could limit this dysfunction through per-ischemic inhibition of reactive oxygen species (ROS) generation.

Methods: First, ROS production was evaluated during simulated ischemia in an vitro model of isolated rat cardiomyocytes at hypothermic (32°C) vs. normothermic (38°C) temperatures. Second, we deciphered the direct effect of hypothermia on mitochondrial respiration and ROS production in oxygenated mitochondria isolated from rabbit hearts. Third, we investigated these parameters in cardiac mitochondria extracted after 30-min of coronary artery occlusion (CAO) under normothermic conditions (CAO-N) or with hypothermia induced by liquid ventilation (CAO-H; target temperature: 32°C).

Results: In isolated rat cardiomyocytes, per-ischemic ROS generation was dramatically decreased at 32 vs. 38°C (e.g., -55±8% after 140min of hypoxia). In oxygenated mitochondria isolated from intact rabbit hearts, hypothermia also improved respiratory control ratio (+22±3%) and reduced H2O2 production (-41±1%). Decreased oxidative stress was further observed in rabbit hearts submitted to hypothermic vs. normothermic ischemia (CAO-H vs. CAO-N), using thiobarbituric acid-reactive substances as a marker. This was accompanied by a preservation of the respiratory control ratio as well as the activity of complexes I, II and III in cardiac mitochondria.

Conclusion: The cardioprotective effect of mild hypothermia involves a direct effect on per-ischemic ROS generation and results in preservation of mitochondrial function. This might explain why the benefit afforded by hypothermia during regional myocardial ischemia depends on how fast it is instituted during the ischemic process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2012.06.030DOI Listing

Publication Analysis

Top Keywords

mild hypothermia
12
rabbit hearts
12
reactive oxygen
8
oxygen species
8
ros production
8
isolated rat
8
rat cardiomyocytes
8
oxygenated mitochondria
8
mitochondria isolated
8
per-ischemic ros
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!