Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein disulphide-dithiol interchange is a universal mechanism of redox regulation in which thioredoxins (Trxs) play an essential role. In heterotrophic organisms, and non-photosynthetic plant organs, NADPH provides the required reducing power in a reaction catalysed by NADPH-dependent thioredoxin reductase (NTR). It has been considered that chloroplasts constitute an exception because reducing equivalents for redox regulation in this organelle is provided by ferredoxin (Fd) reduced by the photosynthetic electron transport chain, not by NADPH. This view was modified by the discovery of a chloroplast-localised NTR, denoted NTRC, a bimodular enzyme formed by NTR and Trx domains with high affinity for NADPH. In this review, we will summarize the present knowledge of the biochemical properties of NTRC and discuss the implications of this enzyme on plastid redox regulation in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2012.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!