Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density collagen gel tubes as urethral grafts in 16 male New Zealand white rabbits. The constructs were either acellular or seeded with autologous smooth muscle cells, isolated from an open bladder biopsy. After the formation of a urethral defect by excision, the tissue-engineered grafts were interposed between the remaining urethral ends. No catheter was placed postoperatively. The animals were evaluated at 1 or 3 months by contrast urethrography and histological examination. Comparing the graft caliber to the control urethra at 3 months, a larger caliber was found in the cell-seeded grafts (96.6% of the normal caliber) than in the acellular grafts (42.3%). Histology of acellular and cell-seeded grafts did not show any sign of inflammation, and spontaneous regrowth of urothelium could be demonstrated in all grafts. Urethral fistulae, sometimes associated with stenosis, were observed, which might be prevented by urethral catheter application. High-density collagen gel tubes may be clinically useful as an effective treatment of congenital and acquired urethral pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2012.06.087 | DOI Listing |
Adv Sci (Weinh)
December 2024
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Spectrochim Acta A Mol Biomol Spectrosc
March 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China. Electronic address:
Respir Physiol Neurobiol
November 2024
Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden.
Collagen type VI (COL6) is an important component of the extracellular matrix (EM) and may have a major role in lung development and disease. Studies on COL6 expression during lung development are mainly based on animal models. The aim of the study was to define COL6 expression pattern in lung parenchyma in infants with different lung maturational stages.
View Article and Find Full Text PDFExp Eye Res
January 2025
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland. Electronic address:
The major obstacle in the commercialisation and clinical translation of tissue engineered medicines is the required for the development of implantable tissue surrogates prolonged in vitro culture. Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition, thus offering an opportunity to bridge the gap between research and development in tissue engineered substitutes. However, the optimal MMC agent is still elusive.
View Article and Find Full Text PDFBioact Mater
February 2025
Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Bone morphogenetic protein 2 (BMP2) is clinically applied for treating intractable fractures and promoting spinal fusion because of its osteogenic potency. However, adverse effects following the release of supraphysiological doses of BMP2 from collagen carriers are widely reported. Nanoclay gel (NC) is attracting attention as a biomaterial, given the potential for localized efficacy of administered agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!