Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT.
Methods And Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used.
Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G(2)-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7.
Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623267 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2012.05.035 | DOI Listing |
Transl Cancer Res
December 2024
Department of Gynecology, the First Hospital of Weinan City, Weinan, China.
Background: Chromosomal instability (CIN) has been identified as a factor that increases the susceptibility of tumor cells to kinesin family member 18A (KIF18A) inhibitors. Limited research exists on genes that are associated with sensitization to KIF18A inhibitors (KIF18Ais). Our study aimed to identify a gene linked to heightened sensitivity to KIF18Ais in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and uterine corpus endometrial carcinoma (UCEC).
View Article and Find Full Text PDFTheriogenology
January 2025
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China. Electronic address:
This study aimed to investigate the mechanism by which Se in regulates the proliferation and apoptosis of sheep Leydig cells via the miR-200a/NRF pathway. The cells were isolated and purified from the testes of 8-month-old sheep via a Percoll density gradient. After the cells were treated with different concentrations of Se (0, 2.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
Background: Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC.
View Article and Find Full Text PDFMed
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Electronic address:
Background: The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies.
Methods: Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality.
Sci Rep
January 2025
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
Cell cycle-dependent gene expression analysis is particularly important as numerous genes show tightly regulated expression patterns at different phases of the cell cycle. For cancer cells, analysis of cell cycle-related events is of paramount significance since tumorigenesis is characteristically coupled to cell cycle perturbations. RT-qPCR is a highly sensitive technique to investigate cell cycle-dependent transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!