Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high absorption energies of partially wetted particles at fluid interfaces allow the production of macroporous composite materials from particle-stabilized foams. Competition between the different particle types determines how they are distributed in the foam lamella and allow the phase distribution to be controlled; a technique that is useful in the design and engineering of porous composites. Here, we report details on the effects of preferential and competitive adsorption of poly(vinylidene fluoride) (PVDF) and alumina (Al(2)O(3)) particles at the foam interfaces on the consolidated macroporous composite materials. By varying the relative composition and surface energies of the stabilizing particles, macroporous composite materials with a broad range of phase distributions are possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.05.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!