It is well known in the literature that cinnamyl alcohol dehydrogenase (CAD) reduces hydroxycinnamyl aldehydes, such as coumaryl, coniferyl, and sinapyl aldehydes, to their corresponding alcohols in the presence of NADPH, and these alcohols act as the precursors of lignin biosynthesis. Here, we report the isolation of a cDNA encoding an NADP(+)-dependent CAD, designated as AaCAD, from the cDNA library using glandular secretory trichomes of Artemisia annua as the source of mRNA. A phylogenetic analysis indicated that AaCAD was clustered with AtCAD4 and AtCAD5, which were involved in monolignol biosynthesis from Arabidopsis. Semi-quantitative RT-PCR showed that the AaCAD transcript was abundant mostly in leaf and root, followed by flower, and lowest in stem. Functional and enzymatic assays showed that the recombinant enzyme was able to reversibly reduce a variety of common CADs substrates, namely geranial, cinnamyl aldehyde, sinapyl aldehyde, coniferyl aldehyde, and a sesquiterpenoid artemisinic aldehyde, to geraniol, cinnamyl alcohol, sinapyl alcohol, coniferyl alcohol, and artemisinic alcohol respectively. Besides, considering that AaCAD was identified from the glandular secretory trichomes of A. annua, and that the recombinant enzyme exhibited reductase activity by using artemisinic aldehyde as substrate, some possible role of AaCAD in artemisinin biosynthesis is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2012.05.011 | DOI Listing |
Curr Res Microb Sci
December 2024
Department of Orthodontics, Nihon University of Dental School at Matsudo. Chiba 271-8587, Japan.
The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Low-temperature stress is a major environmental constraint, limiting the growth, development, and yield of peppers. Cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POA) are two key enzymes in lignin synthesis, participating in monolignol biosynthesis and monolignol polymerization, respectively. Although CAD and POA are known to play central roles in lignin biosynthesis and plant responses to abiotic stress, their functions in peppers remain poorly understood.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Mulberry ( L.) is a significant economic tree species in China. The lignin component serves as a critical limiting factor that impacts both the forage quality and the conversion efficiency of mulberry biomass into biofuel.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Beichuan Shennong Agriculture Technology Development Co., Ltd, Mianyang, 621000, China.
Background: Magnolia officinalis (M. officinalis) thrives in temperate, elevated regions, and its desiccated bark comprises medicinal monolignol. Both abiotic and biotic factors can influence the pharmacodynamic compounds of M.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!