Microfluidic 3D cell culture: potential application for tissue-based bioassays.

Bioanalysis

Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.

Published: June 2012

Current fundamental investigations of human biology and the development of therapeutic drugs commonly rely on 2D monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function or physiology of living tissues, nor the highly complex and dynamic 3D environments in vivo. Microfluidic technology can provide microscale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in the microfluidic technology for 3D cell culture and their biological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909686PMC
http://dx.doi.org/10.4155/bio.12.133DOI Listing

Publication Analysis

Top Keywords

cell culture
20
microfluidic technology
12
culture systems
8
technology cell
8
culture
5
microfluidic
4
microfluidic cell
4
culture potential
4
potential application
4
application tissue-based
4

Similar Publications

Constant antigenic changes, new variants and easy transmission of SARS-CoV-2 virus should acquire greater zoonotic attention and need to remain alert. In this retrospective study the aim was to analyze seropositivity to SARS-CoV-2 in dogs by commercial ELISA. The Virus neutralization test (VNT) was modified for the purpose of confirmation of SARS-CoV-2 antibodies in ELISA-positive dog sera.

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!