The paper describes the anatomical variation of four roots in a mandibular permanent first molar diagnosed using multiple angulated preoperative radiographs and its successful nonsurgical endodontic management. Careful observation and exploration of the pulpal floor using a dental operating microscope revealed a peculiar developmental root fusion line on the pulp chamber floor. Based on the above observation, a correlation between this unusual line and the existence of additional roots has been proposed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389662PMC
http://dx.doi.org/10.1155/2012/237302DOI Listing

Publication Analysis

Top Keywords

developmental root
8
root fusion
8
four-rooted mandibular
4
mandibular molar
4
molar unusual
4
unusual developmental
4
fusion case
4
case report
4
report paper
4
paper describes
4

Similar Publications

The root epidermis of Arabidopsis (Arabidopsis thaliana) consists of two distinct cell types: hair (H) cells and non-hair (N) cells, whose patterning is regulated by a network of genes. Among these, the WEREWOLF (WER) gene, encoding an R2R3 MYB transcription factor, acts as a master regulator by promoting the expression of key downstream genes, such as GLABRA2 and CAPRICE. However, the mechanisms controlling WER expression have remained largely unexplored.

View Article and Find Full Text PDF

Conservation of symbiotic signaling since the most recent common ancestor of land plants.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III Paul Sabatier, Institut National Polytechnique Toulouse, Castanet-Tolosan 31320, France.

Plants have colonized lands 450 million years ago. This terrestrialization was facilitated by developmental and functional innovations. Recent evo-devo approaches have demonstrated that one of these innovations was the mutualistic arbuscular mycorrhizal symbiosis (AMS).

View Article and Find Full Text PDF

Understanding the influence of plant genetic factors on rhizosphere microbiome assembly in .

Front Microbiol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Introduction: Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood.

Methods: This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of .

View Article and Find Full Text PDF

ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline-alkali tolerance in maize.

J Genet Genomics

December 2024

Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.

View Article and Find Full Text PDF

Background: Dens invaginatus is a developmental abnormality originating from tooth development, including coronal invaginatus and radicular invaginatus. The reported incidence varies greatly due to diagnostic techniques, classification criteria and race. The incidence of dens invaginatus in China was not clear, and the impact of dens invaginatus on periodontal support tissue were rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!