Current thinking about LTP triggered in the area CA1 of hippocampal slices is ruled by two "dogmas": (1) A single train of high-frequency stimulation is sufficient to trigger short-lasting LTP (1-3 h), whereas multiple trains are required to induce long-lasting LTP (L-LTP, more than 4 h). (2) The development of the late phase of L-LTP requires the synthesis of new proteins. In this study, we found that a single high-frequency train could trigger an LTP lasting more than 8 h that was not affected by either anisomycin or cycloheximide (two inhibitors of protein synthesis). We ascertained that the induction of this L-LTP made use of the same mechanisms as those usually reported to be involved in LTP induction: it was dependent on NMDA receptors and on the activation of two "core" kinases, CaMKII and PI3K. These findings call into question the two "dogmas" about LTP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394721PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040823PLOS

Publication Analysis

Top Keywords

long-lasting ltp
8
protein synthesis
8
ltp
6
ltp requires
4
requires repeated
4
repeated trains
4
trains induction
4
induction protein
4
synthesis development
4
development current
4

Similar Publications

β-adrenergic receptor-induced E-S potentiation in the dorsal and ventral hippocampus.

Front Synaptic Neurosci

December 2024

Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.

β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.

View Article and Find Full Text PDF

cAMP signalling is critical for memory consolidation and certain forms of long-term potentiation (LTP). Phosphodiesterases (PDEs), enzymes that degrade the second messengers cAMP and cGMP, are highly conserved during evolution and represent a unique set of drug targets, given the involvement of these enzymes in several pathophysiological states including brain disorders. The PDE4 family of cAMP-selective PDEs exert regulatory roles in memory and synaptic plasticity, but the specific roles of distinct PDE4 isoforms in these processes are poorly understood.

View Article and Find Full Text PDF

Introduction: Serotonergic psychedelics and ketamine produce rapid and long-lasting symptomatic relief in multiple psychiatric disorders. Evidence suggests that despite having distinct molecular targets, both drugs may exert therapeutic benefit via their pro-neuroplastic effects. Following treatment with ketamine or serotonergic psychedelics, patients are reported to be more open to behavioral change, which is leveraged for psychotherapy-assisted reframing of narratives of the self.

View Article and Find Full Text PDF
Article Synopsis
  • The amygdala, a key brain region for emotion and memory, shows enhanced memory encoding through electrical stimulation, particularly in its basolateral complex (BLA).
  • Direct stimulation using rhythmic theta-burst stimulation (TBS) has been found to improve both emotional and non-emotional declarative memory by promoting synaptic plasticity in areas like the hippocampus.
  • A study conducted during a memory task revealed that TBS modulates neuronal activity in the brain, with specific neuron characteristics influencing how they respond to stimulation, which is significant for future neuromodulation therapies.
View Article and Find Full Text PDF

Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!