Endothelial progenitor cells (EPCs) play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107) on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA) that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β) to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391260 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040323 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!