AI Article Synopsis

  • The anaphase-promoting complex (APC) is an essential E3 ubiquitin ligase that regulates the degradation of cell cycle proteins, and is disrupted by the human cytomegalovirus (HCMV).
  • HCMV's protein pUL21a interacts with the APC and is crucial for the degradation of APC subunits APC4 and APC5, leading to APC dysfunction.
  • Mutations in pUL21a that affect its interaction with the APC result in a significant decrease in virus growth, highlighting a unique viral strategy to undermine APC activity for successful infection.

Article Abstract

The anaphase-promoting complex (APC) is an E3 ubiquitin ligase which controls ubiquitination and degradation of multiple cell cycle regulatory proteins. During infection, human cytomegalovirus (HCMV), a widespread pathogen, not only phosphorylates the APC coactivator Cdh1 via the multifunctional viral kinase pUL97, it also promotes degradation of APC subunits via an unknown mechanism. Using a proteomics approach, we found that a recently identified HCMV protein, pUL21a, interacted with the APC. Importantly, we determined that expression of pUL21a was necessary and sufficient for proteasome-dependent degradation of APC subunits APC4 and APC5. This resulted in APC disruption and required pUL21a binding to the APC. We have identified the proline-arginine amino acid pair at residues 109-110 in pUL21a to be critical for its ability to bind and regulate the APC. A point mutant virus in which proline-arginine were mutated to alanines (PR-AA) grew at wild-type levels. However, a double mutant virus in which the viral ability to regulate the APC was abrogated by both PR-AA point mutation and UL97 deletion was markedly more attenuated compared to the UL97 deletion virus alone. This suggests that these mutations are synthetically lethal, and that HCMV exploits two viral factors to ensure successful disruption of the APC to overcome its restriction on virus infection. This study reveals the HCMV protein pUL21a as a novel APC regulator and uncovers a unique viral mechanism to subvert APC activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390409PMC
http://dx.doi.org/10.1371/journal.ppat.1002789DOI Listing

Publication Analysis

Top Keywords

hcmv protein
12
protein pul21a
12
apc
12
ubiquitin ligase
8
anaphase-promoting complex
8
degradation apc
8
apc subunits
8
regulate apc
8
mutant virus
8
ul97 deletion
8

Similar Publications

The impact of human cytomegalovirus (HCMV) infection on the mid- and long-term balance between pro-inflammatory and anti-inflammatory cytokines among kidney transplant recipients (KTRs) remains unclear. We measured plasma levels of 12 Th1/Th2-type cytokines (granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin [IL]-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-18 and tumor necrosis factor-α) in a cohort of 290 KTRs at four time points through month 12 after transplantation. Cytokine levels at each point were compared according to the previous documentation of HCMV replication by two approaches: "cumulative exposure" from the time of transplantation and "recent exposure" within the 2-3 months preceding cytokine assessment.

View Article and Find Full Text PDF

Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear.

View Article and Find Full Text PDF

Infection-induced lysine lactylation enables herpesvirus immune evasion.

Sci Adv

January 2025

Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.

Aerobic glycolysis is a hallmark of many viral infections, leading to substantial accumulation of lactate. However, the regulatory roles of lactate during viral infections remain poorly understood. Here, we report that human cytomegalovirus (HCMV) infection leverages lactate to induce widespread protein lactylation and promote viral spread.

View Article and Find Full Text PDF

Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection.

Viruses

December 2024

Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a common herpesvirus that can severely affect transplant recipients, those with AIDS, and newborns. Existing synthetic medications face limitations, including toxicity, processing issues, and viral resistance. As part of this study, the efficacy of the extracellular enzyme laccase isolated from a widely available mushroom (Pleurotus pulmonarius) was compared to that of ganciclovir, a common antiviral, used against HCMV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!