Hemorrhagic shock leads to hepatic hypoperfusion and activation of mitogen-activated stress kinases (MAPK) like c-Jun N-terminal kinase (JNK) 1 and 2. Our aim was to determine whether mitochondrial dysfunction leading to hepatic necrosis and apoptosis after hemorrhage/resuscitation (H/R) was dependent on JNK2. Under pentobarbital anesthesia, wildtype (WT) and JNK2 deficient (KO) mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer's solution. Serum alanine aminotransferase (ALT), necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R, ALT in WT-mice increased from 130 U/L to 4800 U/L. In KO-mice, ALT after H/R was blunted to 1800 U/l (P < 0.05). Necrosis, caspase-3 activity and ROS were all substantially decreased in KO compared to WT mice after H/R. After sham operation, intravital microscopy revealed punctate mitochondrial staining by rhodamine 123 (Rh123), indicating normal mitochondrial polarization. At 4 h after H/R, Rh123 staining became dim and diffuse in 58% of hepatocytes, indicating depolarization and onset of the mitochondrial permeability transition (MPT). By contrast, KO mice displayed less depolarization after H/R (23%, P < 0.05). In conclusion, JNK2 contributes to MPT-mediated liver injury after H/R.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390051PMC
http://dx.doi.org/10.1155/2012/641982DOI Listing

Publication Analysis

Top Keywords

c-jun n-terminal
8
n-terminal kinase
8
liver injury
8
mitochondrial permeability
8
permeability transition
8
necrosis apoptosis
8
mitochondrial polarization
8
intravital microscopy
8
h/r
7
mitochondrial
6

Similar Publications

Objective: The study investigates whether the expression and function of ENT1 can be regulated by inhibiting the JNK signaling pathway, thereby altering the levels of extracellular adenosine and glutamate in neurons, and subsequently affecting the progression of epilepsy.

Methods: The adult male SD rats were randomly divided into four groups: EP + SP600125 group, EP + DMSO group, EP group, and normal control group. The expression levels of ENT1, p-JNK, and JNK in the hippocampus of rats from each experimental group were detected using Western blotting technology.

View Article and Find Full Text PDF

Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.

View Article and Find Full Text PDF

We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay.

View Article and Find Full Text PDF

This study aims to investigate the effect and potential mechanism of Polygonati Rhizoma aqueous extract in protecting mice from gastric mucosal injury(stomach Yin deficiency). ICR mice were administrated with the mixture of pungent substance extract and alcohol by gavage once a day for 6 weeks to establish the mouse model of gastric mucosal injury with gastric Yin deficiency. The modeled mice were randomized into three groups of model and Polygonati Rhizoma aqueous extract administrated at 0.

View Article and Find Full Text PDF

Design and synthesis of JNK1-targeted PROTACs and research on the activity.

Bioorg Chem

December 2024

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Kinase dysregulation is greatly associated with cell growth, proliferation, differentiation and apoptosis, which indicates their great potential as therapeutic targets for treatment of numerous progressive disorders, including inflammatory, metabolic and autoimmune disorders, organ fibrosis and cancer. The c‑Jun N‑Terminal Kinase (JNK), as a member of MAPK family, is proved to be a potential target for the treatment of pulmonary fibrosis, which is the most common progressive and fatal fibrotic lung disease. As a new strategy, small-molecule-mediated targeted protein degradation pathway has the advantages of catalytic properties, overcoming drug resistance and expanding target space, which can circumvent the limitations associated with kinase inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!