Two in one: A metal-organic framework obtained from three different inorganic building blocks (tetrameric Zn(4) O, trimeric Zn(3) OH, and monomeric Zn) posseses a nested cage-in-cage and framework-in-framework architecture. 24 Zn(4) O tetramers and eight Zn monomers form a sodalite cage into which a cubic cage made from eight Zn(3) (OH) trimers is nestled. Eight monomeric Zn(2+) centers interconnect these two cages.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201203425DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
zeolite-type frameworks
4
frameworks metal-organic
4
framework zn24
4
zn24 @zn104
4
@zn104 cube-in-sodalite
4
cube-in-sodalite architecture
4
architecture metal-organic
4
framework three
4
three inorganic
4

Similar Publications

Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8.

ACS Appl Mater Interfaces

January 2025

Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.

Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications.

View Article and Find Full Text PDF

Sensitive and accurate determination of acetamiprid is highly desirable for guaranteeing food safety. In this Letter, an energy-transfer-based dual-mode biosensor was developed using zinc-based metal-organic frameworks (Zn-MOFs) acting as both photoelectrochemical (PEC) and electrochemiluminescent (ECL) donors and Pt@CuO cubic nanocrystals (CNs) as the energy acceptor for detecting acetamiprid. By integration of aptamer recognition with two-step DNA circuit amplification (entropy-driven DNA cycle and DNA walker), the detection of acetamiprid was converted into the assay of abundant intermediate DNA strands.

View Article and Find Full Text PDF

Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMnO toward Long-Life Lithium-Ion Batteries.

Nano Lett

January 2025

Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

Spinel lithium manganese oxide (LiMnO, LMO) is a promising cathode material with nontoxicity, high operating voltage, and low cost. However, structural collapse during battery cycling ─ caused by Mn dissolution and the Jahn-Teller effect ─ is a critical disadvantage, reducing cycle retention, particularly at high temperatures. In this study, to solve these critical issues, we introduce Cu(HITP) (CuHITP; HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a conductive two-dimensional (2D) metal-organic framework (MOF) as a surface coating material.

View Article and Find Full Text PDF

Two novel isostructural anionic lanthanide metal-organic frameworks, (MeNH)[Ln(HTCBPE-F)·(HCOO)·DMF]·4.5DMF·2HO (Eu-MOF and Dy-MOF), based on tetraphenylethylene carboxylate ligands were successfully constructed and characterized. These two MOFs possess porous structures and water stabilities with uncoordinated carboxylate groups and dimethyl ammonium cations, which allow for high proton conductivities (5.

View Article and Find Full Text PDF

Impact of cerium doping on the peroxidase-like activity of metal-organic frameworks.

Dalton Trans

January 2025

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.

Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH and MIL-101(Fe)-NO were synthesized with varying compositions a solvothermal method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!