Background: The primary motor cortex, which is part of the corticobasal ganglia loops, may be an alternative option for the surgical treatment of Parkinson disease.

Objective: To report on the 1-year safety and efficacy of unilateral extradural motor cortex stimulation in Parkinson disease.

Methods: A quadripolar electrode strip was extradurally implanted over the motor cortex. Stimulation was continuously delivered through the electrode paddle contralateral to the most affected clinical side. Subjects were prospectively evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS) and the Parkinson's Disease Quality of Life Questionnaire. In addition, an extensive cognitive and behavioral assessment and electroencephalogram recording were performed.

Results: Nine patients were included in this study. No surgical complications or adverse events occurred. Moreover, no cognitive or behavioral changes were observed. Under the off-medication condition, the UPDRS III at baseline was decreased by 14.1%, 23.3%, 19.9%, and 13.2%, at 1, 3, 6, and 12 months, respectively. The motor effects were bilateral, appeared after 3 to 4 weeks of stimulation, and outlasted the stimulation itself for 3 to 4 weeks in 1 case of stimulator accidental switching off. The UPDRS IV was decreased by 40.8%, 42.1%, and 35.5% at 1, 3, and 12 months, respectively. The scores on the Parkinson's Disease Quality of Life Questionnaire were increased at months 3, 6, and 12.

Conclusion: Extradural motor cortex stimulation is a safe procedure. After 12 months, the patients demonstrated a moderate improvement of motor symptoms (particularly axial symptoms) and quality of life.

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e318266e6a5DOI Listing

Publication Analysis

Top Keywords

motor cortex
20
cortex stimulation
16
extradural motor
12
parkinson's disease
12
quality life
12
unilateral extradural
8
stimulation safe
8
disease quality
8
life questionnaire
8
cognitive behavioral
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.

View Article and Find Full Text PDF

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!