It is essential to examine brain materials for the understanding the cause and pathology of mental disorders. Recent methodological progress urges us to set up well qualified brain banks. Human tissue and Bio-banking is a complex field and the daily practice of brain banks needs to abide by several golden standards in order to avoid pitfalls in basic research: 1) A donor system in which informed consent is granted for the use of the samples for scientific research, including genetic analysis and access to medical records, 2) Rapid autopsy system, 3) Compatibility of protocols for procurement, management, handling and storage, 4) A generally accepted consensus on diagnostic criteria, 5) Quality control, 6) Abiding by local/international legal and ethical guidelines for work with human material, 7) Proper safety procedures. In the present review, the authors introduced the activities of European brain banks, and discussed on their current issues, and on the problems remain to be resolved.

Download full-text PDF

Source
http://dx.doi.org/10.5387/fms.58.82DOI Listing

Publication Analysis

Top Keywords

brain banks
12
brain
5
pitfalls practicalities
4
practicalities collecting
4
collecting banking
4
banking human
4
human brain
4
brain tissues
4
tissues psychiatric
4
psychiatric neulogical
4

Similar Publications

Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.

View Article and Find Full Text PDF

Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Nat Commun

January 2025

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.

Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants.

View Article and Find Full Text PDF

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample.

View Article and Find Full Text PDF

Background: Collaborative research with end-users is an effective way to generate meaningful research applications and support greater impact on practice and knowledge exchange. To address these needs, a Citizen Advisory Group (CAG) of nine older adults (ages 64-80, 67% women) was formed to advise scientists on the development of Brain Health PRO (BHPro), a web-based platform designed to increase dementia prevention literacy and awareness. The current study evaluated if the CAG met its objectives, how inclusion of the CAG aligned with collaborative research approaches, and the CAG's experience and satisfaction throughout the development process.

View Article and Find Full Text PDF

Association of immune-mediated diseases with the risk of dementia and brain structure in UK Biobank participants.

Age Ageing

November 2024

Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.

Background: Immunity and inflammation may be essential to the pathogenesis of dementia. However, the association of immune-mediated diseases with the risk of incident dementia has not been well characterised.

Objectives: We aimed to investigate the prospective association of 27 immune-mediated diseases and incident dementia risk and to explore the underlying mechanisms driven by brain structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!