Feline calicivirus (FCV) is a pathogenic microorganism that causes upper respiratory diseases in cats. Recently, an FCV infection with a high mortality rate has been confirmed, and there is need to develop a treatment for cases of acute infection. We evaluated whether the replication of FCV could be prevented by RNA interference. For this study, we designed an siRNA targeted to the polymerase region of the strain FCV-B isolated from a cat that died after exhibiting neurological symptoms. Cells transfected with siR-pol dose-dependently suppressed the replication of FCV-B. siR-pol suppressed its replication by suppressing the target viral RNA.

Download full-text PDF

Source
http://dx.doi.org/10.4265/bio.17.87DOI Listing

Publication Analysis

Top Keywords

feline calicivirus
8
targeted polymerase
8
suppressed replication
8
suppression feline
4
replication
4
calicivirus replication
4
replication small
4
small interfering
4
interfering rna
4
rna targeted
4

Similar Publications

Feline calicivirus (FCV) is one of the most common viral pathogens in domestic cats worldwide, which mainly causes upper respiratory tract infections in felines and seriously threatens the health of felines. Consequently, it is crucial to establish a rapid detection method to efficiently take control and prevent the spread of FCV. To construct the Cas13a-RAA-LFD reaction system, this study specifically designed recombinase-aided amplification (RAA) primers added with a T7 promoter and CRISPR RNA (crRNA), which were both based on the FCV relatively conserved sequence.

View Article and Find Full Text PDF

An effectively protective VLP vaccine candidate for both genotypes of feline calicivirus.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.

View Article and Find Full Text PDF

A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus.

Biosensors (Basel)

November 2024

Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.

Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV.

View Article and Find Full Text PDF

Introduction: Cell-processing operations can potentially contaminate biosafety cabinets, which should be maintained sterile. However, unintended contamination can occur owing to the presence of viruses, mycoplasmas, and bacteria in the raw materials. Moreover, although several methods for expunging these contaminants have been proposed, an optimal method has not yet been determined.

View Article and Find Full Text PDF

In dentistry, disinfection with antimicrobials is employed under different conditions and at different time points. During the COVID-19 pandemic, the use of disinfectant dental sprays was proposed, among other measures, to help prevent the transmission of infections during dental procedures that require highly effective antiseptics at particularly short contact times. The study aimed to evaluate the efficacy of electrolyzed saline (EOS) compared with other antiseptics in terms of the spread of enveloped and nonenveloped viruses by ultrasonic scaler (USS)-generated dental spray.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!