Exploiting aperiodic designs in nanophotonic devices.

Rep Prog Phys

Departamento Física de Materiales, Facultad CC. Físicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.

Published: March 2012

In this work we consider the role of aperiodic order-order without periodicity-in the design of different optical devices in one, two and three dimensions. To this end, we will first study devices based on aperiodic multilayered structures. In many instances the recourse to Fibonacci, Thue-Morse or fractal arrangements of layers results in improved optical properties compared with their periodic counterparts. On this basis, the possibility of constructing optical devices based on a modular design of the multilayered structure, where periodic and quasiperiodic subunits are properly mixed, is analyzed, illustrating how this additional degree of freedom enhances the optical performance in some specific applications. This line of thought can be naturally extended to aperiodic arrangements of optical elements, such as nanospheres or dielectric rods in the plane, as well as to three-dimensional photonic quasicrystals based on polymer materials. In this way, plentiful possibilities for new tailored materials naturally appear, generally following suitable optimization algorithms. Then, we present a detailed discussion on the physical properties supporting the preferential use of aperiodic devices in a number of optical applications, opening new avenues for technological innovation. Finally we suggest some related emerging topics that deserve some attention in the years to come.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0034-4885/75/3/036502DOI Listing

Publication Analysis

Top Keywords

optical devices
8
devices based
8
optical
6
devices
5
exploiting aperiodic
4
aperiodic designs
4
designs nanophotonic
4
nanophotonic devices
4
devices work
4
work consider
4

Similar Publications

Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.

View Article and Find Full Text PDF

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

Background And Objectives: The purpose of this study was to evaluate the antimicrobial activity of methylene blue dye with 660-nm diode laser in cavity disinfection and to compare the total bacterial count in dentinal samples preexcavation, postexcavation, and postdisinfection. The study design was experimental in vivo.

Materials And Methods: Fifteen children aged 5-12 years with 15 primary molars requiring atraumatic restorative treatment (ART) were selected.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!