The biodegradation study of algal dissolved organic matter (DOM) released from Microcystis aeruginosa, Staurastrum dorsidentiferum and Cryptomonas ovata was carried out. The algal DOM released from Microcystis aeruginosa and Staurastrum dorsidentiferum is relatively stable, while a part of the algal DOM released from Cryptomonas ovata may be easily decomposed. Before biodegradation, two fulvic-like fluorescence peaks (A and B) and a protein-like fluorescence peak (C) and another peak with E(x)/E(m) values of 320 - 330/390 nm (peak D) were observed in the algal DOM released from three kinds of phytoplankton. The fulvic-like fluorophores may be refractory regardless of the kinds of phytoplankton, while protein-like fluorophores released from Microcystis aeruginosa and Staurastrum dorsidentiferum may be relatively refractory and those from Cryptomonas ovata may be unstable. Peak D in the surface water of Lake Biwa may be attributed to low-molecular-weight substances produced during cultivation and/or biodegradation of several kinds of phytoplankton. The ratios of the fluorescence intensities (RFI/DOC) of peak A to peak B in algal DOM (< 1.0) were lower than those in soil Dando FA (1.8). On the other hand, no relationships between peak A and peak C were observed for three kinds of phytoplankton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.28.675 | DOI Listing |
Mar Environ Res
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China. Electronic address:
The world's largest green tide, caused by Ulva prolifera, in the Yellow Sea negatively affects the social and economic development of China's coastal region. The dissolved organic matter (DOM) released from U. prolifera is a potential threat to the offshore ecological health.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan. Electronic address:
This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55 to 6.
View Article and Find Full Text PDFWater Res
December 2024
Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany.
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
Microplastic pollution in terrestrial ecosystems threatens to destabilize large soil carbon stocks that help to mitigate climate change. Carbon-based substrates can release from microplastics and contribute to terrestrial carbon pools, but how these emerging organic compounds influence carbon mineralization and sequestration remains unknown. Here, microcosm experiments are conducted to determine the bioavailability of microplastic-derived dissolved organic matter (MP-DOM) in soils and its contribution to mineral-associated carbon pool.
View Article and Find Full Text PDFSci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!