Cell migration is fundamental to development and many cell types have a migratory phase during embryonic development when tissues and body structures are forming. Cancer metastasis is in many ways thought to be analogous to embryonic development. Some of the mechanisms that tumor cells use to hijack the adult body are thought to derive from their abilities to reactivate embryonic signaling and motility pathways and thus enhance their growth and motility. Melanomas are notorious for their ability to become highly invasive and metastatic if not removed early. While adult melanin producing cells, melanocytes, have limited mobility, melanoblasts are highly motile cells that move through the dermis and epidermis during embryogenesis and could serve as a useful paradigm for some aspects of melanoma invasion and metastasis. Recent findings from our laboratory using ex-vivo imaging of mouse melanoblast migration in the epidermis provide the first insights into the role of Rac1 in developing mouse melanoblasts in vivo. Melanoblasts do not move as a collective group, or use an invasive or blebbing mode of migration as revealed by other in vivo systems, but rather they extend short and long dynamic pseudopodia and squeeze between epidermal keratinocytes using myosin motors. Melanoblasts can initiate short actin-based protrusions independently of Rac1. Rac1 is required to control the rate of formation of long actin-based protrusions for effective translocation in skin. Our results reveal a novel mode of in vivo migration controlled by Rac1 that is important for normal development and likely in melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.4161/sgtp.19494DOI Listing

Publication Analysis

Top Keywords

melanoblasts move
8
embryonic development
8
actin-based protrusions
8
melanoblasts
5
rac1
5
move rac1
4
rac1 sets
4
sets pace
4
pace cell
4
migration
4

Similar Publications

Simulation of melanoblast displacements reveals new features of developmental migration.

Development

June 2018

Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France

To distribute and establish the melanocyte lineage throughout the skin and other developing organs, melanoblasts undergo several rounds of proliferation, accompanied by migration through complex environments and differentiation. Melanoblast migration requires interaction with extracellular matrix of the epidermal basement membrane and with surrounding keratinocytes in the developing skin. Migration has been characterized by measuring speed, trajectory and directionality of movement, but there are many unanswered questions about what motivates and defines melanoblast migration.

View Article and Find Full Text PDF

The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin.

View Article and Find Full Text PDF

Cell migration is fundamental to development and many cell types have a migratory phase during embryonic development when tissues and body structures are forming. Cancer metastasis is in many ways thought to be analogous to embryonic development. Some of the mechanisms that tumor cells use to hijack the adult body are thought to derive from their abilities to reactivate embryonic signaling and motility pathways and thus enhance their growth and motility.

View Article and Find Full Text PDF

MGF (KIT ligand) is a chemokinetic factor for melanoblast migration into hair follicles.

Dev Biol

September 2000

MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom.

Melanoblasts, the precursors of the pigment-producing cells of the skin and hair, are derived from the neural crest and migrate to the skin around 12 days of gestation in the mouse. In adult mice almost all the melanoblasts are confined to the hair follicles except for the epidermal layers of nonhairy skin. The receptor tyrosine kinase, KIT, is necessary for the survival, proliferation, and migration of melanoblasts.

View Article and Find Full Text PDF

Molecular motors and their role in pigmentation.

Cell Mol Biol (Noisy-le-grand)

November 1999

Department of Dermatology, University Hospital, Gent, Belgium.

Skin pigmentation is orchestrated through a series of complementary processes. After migration of melanoblasts out of the neural crest to epidermis and hair follicle, these cells mature into melanocytes. Differentiated melanocytes produce melanin in specialized organelles, the melanosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!