Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms.

Brain Res

Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India.

Published: August 2012

Neuro-inflammation and oxidative stress plays a key role in the pathophysiology of Parkinson's disease (PD). Studies demonstrated that neuro-inflammation and associated infiltration of inflammatory cells into central nervous system are inhibited by 3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA) reductase inhibitors. Based on these experimental evidences, the present study has been designed to evaluate the neuroprotective effect of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) against 6-hydroxydopamine (6-OHDA) induced unilateral lesion model of PD. In the present study, the animals were divided into nine groups (n=15 per group). Group I: Naive (without treatment); Group II: Sham (surgery performed, vehicle administered); Group III: Atorvastatin (20mg/kg); Group IV: Simvastatin (30 mg/kg); Group V: Control [Intrastriatal 6-OHDA (20 μg; single unilateral injection)]; Groups VI and VII: 6-OHDA (20 μg)+atorvastatin (10mg/kg and 20mg/kg) respectively; Groups VIII and IX: 6-OHDA (20 μg)+simvastatin (15 mg/kg and 30 mg/kg) respectively. Intrastriatal administration of 6-OHDA (20 μg; 4 μl of 5 μg/μl) significantly caused impairment in body weight, locomotor activity, rota-rod performance, oxidative defense and mitochondrial enzyme complex activity, and increase in the inflammatory cytokine levels (TNF-α and IL-6) as compared to naive animals. Atorvastatin (20mg/kg) and simvastatin (30 mg/kg) drug treatment significantly improved these behavioral and biochemical alterations restored mitochondrial enzyme complex activities and attenuated neuroinflammatory markers in 6-OHDA (20 μg) treated animals as compared to control group. The findings of the present study demonstrate the neuroprotective potential of statins in experimental model of 6-OHDA induced Parkinson like symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2012.06.050DOI Listing

Publication Analysis

Top Keywords

hmg-coa reductase
12
reductase inhibitors
12
6-ohda induced
12
6-ohda μg
12
neuroprotective potential
8
atorvastatin simvastatin
8
6-ohda
8
6-hydroxydopamine 6-ohda
8
atorvastatin 20mg/kg
8
simvastatin mg/kg
8

Similar Publications

Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of , and .

Int J Mol Sci

December 2024

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.

Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.

View Article and Find Full Text PDF

Proximate composition, peptide characterization and bioactive properties of faba bean blanching water.

Food Res Int

January 2025

The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.

Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.

View Article and Find Full Text PDF

Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development.

View Article and Find Full Text PDF

Caryophyllene Oxide, a Bicyclic Terpenoid Isolated from with Antitumor Activity: In Vivo, In Vitro, and In Silico Studies.

Int J Mol Sci

December 2024

Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico.

The Annona genus contains some species used in Mexican traditional medicine for the treatment cancer, including . The present study aimed to investigate the anticancer activity of caryophyllene oxide (CO) isolated from using in vivo, in vitro, and in silico approaches. The identification of CO was performed using gas chromatography-mass spectroscopy and NMR methods.

View Article and Find Full Text PDF

Integrative Transcriptomic and Target Metabolite Analysis as a New Tool for Designing Metabolic Engineering in Yeast.

Biomolecules

November 2024

Centre for Omic Sciences, Eurecat, Centre Tecnològic de Catalunya, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain.

Precision fermentation processes, especially when using edited microorganisms, demand accuracy in the bioengineering process to maximize the desired outcome and to avoid adverse effects. The selection of target sites to edit using CRISPR/Cas9 can be complex, resulting in non-controlled consequences. Therefore, the use of multi-omics strategies can help in the design, selection and efficiency of genetic editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!