A dual imaging approach, combining magnetic resonance imaging to localize lesions and synchrotron rapid scanning X-ray fluorescence (XRF) mapping to localize and quantify calcium, iron and zinc was used to examine one case of recent stroke with hemorrhage and two cases of ischemia 3 and 7 years before death with the latter showing superficial necrosis. In hemorrhagic lesions, more Fe is found accompanied with less Zn. In chronic ischemic lesions, Fe, Zn and Ca are lower indicating that these elements are removed as the normal tissue dies and scar tissue forms. Both susceptibility and T2* maps were calculated to visualize iron in hemorrhages and validated by XRF Ca and Fe maps. The former was superior for imaging iron in hemorrhagic transformation and necrosis but did not capture ischemic lesions. In contrast, T2* could not differentiate Ca from Fe in necrotic tissue but did capture ischemic lesions, complementing the susceptibility mapping. The spatial localization, accurate quantitative data and elemental differentiation shown here could also be valuable for imaging other brain tissue damage with abnormal Ca and Fe content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843005PMC
http://dx.doi.org/10.1016/j.mri.2012.04.011DOI Listing

Publication Analysis

Top Keywords

ischemic lesions
12
x-ray fluorescence
8
magnetic resonance
8
resonance imaging
8
capture ischemic
8
imaging
6
lesions
5
imaging stroke
4
stroke comparison
4
comparison x-ray
4

Similar Publications

Transformer Dil-DenseUnet: An Advanced Architecture for Stroke Segmentation.

J Imaging

November 2024

Research Laboratory: Networked Objects, Control and Communication Systems, NOCCS-ENISo, National Engineering School of Sousse, University of Sousse, Soussse 4023, Tunisia.

We propose a novel architecture, Transformer Dil-DenseUNet, designed to address the challenges of accurately segmenting stroke lesions in MRI images. Precise segmentation is essential for diagnosing and treating stroke patients, as it provides critical spatial insights into the affected brain regions and the extent of damage. Traditional manual segmentation is labor-intensive and error-prone, highlighting the need for automated solutions.

View Article and Find Full Text PDF

Introduction: Body awareness (BA) is the process of gaining sensory awareness based on the physiological states and actions of the body. It is influenced by an individual's attitudes, perceptions, beliefs, and experiences within the social and cultural contexts. Following a stroke, impairments in BA are thought to be widespread and could have a significant impact on recovery results.

View Article and Find Full Text PDF

Background: Few studies investigated the implications of post-PCI QFR and post-PCI ΔQFR (absolute increase of QFR) in de novo lesions of small coronary disease after drug-coated balloon (DCB).

Objectives: We sought to investigate the prognostic implications of post-PCI QFR and post-PCI ΔQFR in patients who received DCB only.

Methods: Patients were divided according to the optimal cutoff value of the post-PCI QFR and the post-PCI ΔQFR.

View Article and Find Full Text PDF

Background: Fractional flow reserve (FFR) can be estimated by analysis of intravascular imaging in a coronary artery; however, there are no data for estimated FFR in an extremity artery. The aim of this concept-generating study was to determine whether it is possible to estimate the value of peripheral FFR (PFFR) by intravascular ultrasound (IVUS) analysis also in femoropopliteal artery lesions.

Methods: Between April 2022 and February 2023, PFFR was measured before endovascular therapy in 31 stenotic femoropopliteal artery lesions.

View Article and Find Full Text PDF

Background: Techniques involving dye injection or regional ischemia are commonly used for the precise identification of liver regions during hepatectomy. The visualization of regions with indocyanine green (ICG) has been widely used for liver segmentation. ICG is typically administered only once during each hepatectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!