The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the molecular pathways that mediate the action of toluene in the brain. Toluene and ethanol induce similar behavioral effects and share some targets including NMDA and GABA receptors. In studies examining neuronal actions of ethanol, mice lacking the calcium-stimulated adenylyl cyclases (ACs), AC1 and AC8 (DKO), show increased sedation durations and impaired protein kinase A (PKA) phosphorylation following acute ethanol treatment. Therefore, using DKO mice, we compared the neurobehavioral responses following toluene exposure to that of ethanol exposure to determine if these abused substances share molecular mechanisms of action. In the present study, acute sensitivity to toluene- or ethanol-induced changes in locomotor activity was evaluated in DKO and wild type (WT) mice. Mice were exposed to toluene vapor (0, 500, 1000, 2000, 6000, or 8000ppm) for 30min in static exposure chambers equipped with activity monitors. Both WT and DKO mice demonstrated increased ambulatory distance during exposure to a 2000-ppm concentration of toluene compared to respective air-exposed (0ppm) controls. Significant increases in locomotor activity were also observed during an air-only recovery period following toluene exposure in WT and DKO mice that had been exposed to 2000ppm of toluene compared to respective air controls. Sedative effects of toluene were equivalent in WT and DKO mice, both during exposure and afterwards during recovery. Although no significant differences in locomotor activity were detected in DKO compared to WT mice at individual doses tested, a significant main effect of toluene was achieved, with DKO mice demonstrating a generalized reduction in locomotor activity during the post-toluene recovery period compared to WT mice (when analyzing all doses collectively). For comparison to toluene, additional WT and DKO mice were treated with 1.0 or 2.0g/kg ethanol (i.p.) and monitored for locomotor activation. In WT mice, both doses of ethanol increased distance traveled compared to saline controls. Conversely, DKO mice demonstrated no increase in locomotor activation at 1.0g/kg, with significantly reduced distances traveled at both doses compared to ethanol-treated WT mice. These behavioral activity results suggest that acute effects of ethanol and toluene are distinct in the mechanisms by which they induce acute sedating effects with respect to AC1 and AC8 activity, but may be similar in the mechanisms subserving locomotor stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2012.06.005DOI Listing

Publication Analysis

Top Keywords

dko mice
28
locomotor activity
16
mice
14
toluene
13
dko
10
calcium-stimulated adenylyl
8
adenylyl cyclases
8
ethanol
8
toluene ethanol
8
behavioral effects
8

Similar Publications

Article Synopsis
  • Proteoglycans like biglycan (Bgn) and decorin (Dcn) are crucial for bone health, primarily by attracting water through their unique structures, but their specific functions are not fully understood.
  • Research using knockout mouse models revealed that Bgn deficiency leads to significant bone loss and reduced resilience, while Dcn appears to have a less pronounced impact, although it compensates when Bgn is absent.
  • Both Bgn and Dcn are essential for important signaling pathways in bone maintenance, with Bgn playing a dominant role in preserving bone structure and hydration levels.
View Article and Find Full Text PDF

Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells protect liver transplants from ischemia-reperfusion injury via an interferon-γ-mediated pathway.

Am J Transplant

December 2024

The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.

View Article and Find Full Text PDF

Background: Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC.

Methods: Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD.

View Article and Find Full Text PDF

Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease.

Proc Natl Acad Sci U S A

December 2024

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.

Article Synopsis
  • * Mice lacking specific circadian receptors (REV-ERBα/β) show increased obesity risk and liver fat when their clocks are disrupted, but pairing their peripheral liver clocks with central ones can help reverse these issues.
  • * The research suggests that keeping the internal clocks of different body parts synchronized, rather than just aligning them with external light cues, might be key to treating metabolic problems linked to circadian cycle disruptions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!