Identification of chronic stress-activated regions reveals a potential recruited circuit in rat brain.

Eur J Neurosci

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Psychiatry North, Building E, 2nd Floor, 2170 East Galbraith Road, Cincinnati, OH 45237-0506, USA.

Published: August 2012

Chronic stress induces presynaptic and postsynaptic modifications in the paraventricular nucleus of the hypothalamus that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the paraventricular nucleus of the hypothalamus, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, (but not RR or WM) induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g. the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538599PMC
http://dx.doi.org/10.1111/j.1460-9568.2012.08161.xDOI Listing

Publication Analysis

Top Keywords

hpa axis
12
paraventricular nucleus
8
nucleus hypothalamus
8
axis drive
8
drive brain
8
brain regions
8
chronic drive
8
stress
7
cvs
7
regions
6

Similar Publications

Rapid optical determination of salivary cortisol responses in individuals undergoing physiological and psychological stress.

Sci Rep

December 2024

Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.

Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.

View Article and Find Full Text PDF

The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.

View Article and Find Full Text PDF

Hair cortisol of pigs in mixed organic farms: the influence of season, breeding system and sex.

Front Vet Sci

December 2024

Clinic for Ruminants and Pigs, Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.

Introduction: Measurement of hair cortisol concentration (HCC) is a useful tool for assessing the activity of the hypothalamic-pituitary-adrenal axis and thus evaluating the long-term adrenocortical response in different animal species and breeds. Robust indigenous pig breeds are highly adapted to the local environment and are preferred for organic farming, compared to the commercial breeds. We investigated whether seasonality, breeding system (indoor or outdoor) and sex influence HCC of pigs reared on organic farms.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

Background: The treatment of vitiligo is difficult and usually requires prolonged therapy. All exogenous glucocorticoid therapies can lead to the hypothalamic-pituitary-adrenal axis (HPA) suppression. Steroid therapy in the form of an intermittent pulse therapy is a much safer option than daily administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!