4-Methylthioamphetamine increases dopamine in the rat striatum and has rewarding effects in vivo.

Basic Clin Pharmacol Toxicol

Millennium Science Nucleus in Stress and Addiction and Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

Published: December 2012

4-Methylthioamphetamine (MTA) is a phenylisopropylamine derivative whose use has been associated with severe intoxications. MTA is usually regarded as a selective serotonin-releasing agent. Nevertheless, previous data have suggested that its mechanism of action probably involves a catecholaminergic component. As little is known about dopaminergic effects of this drug, in this work the actions of MTA upon the dopamine (DA) transporter (DAT) were studied in vitro, in vivo and in silico. Also, the possible abuse liability of MTA was behaviourally assessed. MTA exhibited an in vitro affinity for the rat DAT in the low micromolar range (6.01 μM) and induced a significant, dose-dependent increase in striatal DA. MTA significantly increased c-Fos-positive cells in striatum and nucleus accumbens, induced conditioned place preference and increased locomotor activity. Docking experiments were performed in a homology model of the DAT. In conclusion, our results show that MTA is able to increase extracellular striatal DA levels and that its administration has rewarding properties. These effects were observed at concentrations or doses that can be relevant to its use in human beings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-7843.2012.00926.xDOI Listing

Publication Analysis

Top Keywords

mta
7
4-methylthioamphetamine increases
4
increases dopamine
4
dopamine rat
4
rat striatum
4
striatum rewarding
4
rewarding effects
4
effects vivo
4
vivo 4-methylthioamphetamine
4
4-methylthioamphetamine mta
4

Similar Publications

Mixed Transcortical Aphasia (MTA) is an infrequent aphasic syndrome, characterized by poor comprehension and production in oral language abilities and poor performance in written language abilities. However, individuals with MTA typically retain the ability to repeat. Our patient, a woman who suffered from a left hemisphere ischemic stroke involving perisylvian areas, presented with repetition preserved for words, non-words, sentences and numbers, together with marginally preserved reading abilities.

View Article and Find Full Text PDF

Bond strength between repair and restorative materials is crucial for endodontic success. This study assessed the effects of the following final irrigation solutions on the bond strength of mineral trioxide aggregate (MTA) to a bulk-fill composite: (1) 17% Ethylenediamine tetraacetic acid (EDTA); (2) 2% Chlorhexidine (CHX); (3) 0.2% chitosan; (4) 0.

View Article and Find Full Text PDF

Background: Rigorous assessment of antibody developability is crucial for optimizing lead candidates before progressing to clinical studies. Recent advances in predictive tools for protein structures, surface properties, stability, and immunogenicity have streamlined the development of new biologics. However, accurate prediction of the impact of single amino acid substitutions on antibody structures remains challenging, due to the diversity of complementarity-determining regions (CDRs), particularly CDR3s.

View Article and Find Full Text PDF

Selective Synthesis of Tetrahydroisoquinoline and Piperidine Scaffolds by Oxidative Ring Opening/Ring Closing Protocols of Substituted Indenes and Cyclopentenes.

ChemistryOpen

December 2024

MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.

Novel tetrahydroisoquinoline and piperidine derivatives were selectively synthesized from substituted indenes or cyclopentenes. The process starts with an oxidative cleavage of the ring olefin bond, which gives reactive diformyl intermediates. By a ring-closing step using chiral (R) or (S) α-methylbenzylamine under a reductive amination protocol facilitated ring formation with ring expansion of the corresponding nitrogen-containing heterocycles.

View Article and Find Full Text PDF

Selective Reduction of Esters to Access Aldehydes Using Fiddler Crab-Type Boranes.

J Am Chem Soc

December 2024

Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary.

The partial reduction of esters to aldehydes is a fundamentally important transformation for the synthesis of numerous fine chemicals and consumer goods. However, despite the many efforts, limitations have persisted, such as competing overreduction, low reproducibility, use of exigent reaction conditions and hazardous chemicals. Here, we report a novel catalyst family with a unique steric design which promotes the catalytic partial reduction of esters with unprecedented, near-perfect selectivity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!