Annual plants usually flower and set seed once before senescence results in the death of the whole plant (monocarpic senescence). Leaf senescence also occurs in polycarpic perennials; even in "evergreen" species individual leaves senesce. In the annual model Arabidopsis thaliana sugars accumulate in the senescent leaves and senescence is accelerated by high sugar availability. Similar to A. thaliana, sugar contents increased with leaf age in the perennial Arabis alpina grown under warm conditions (22 °C day/18 night). At 5 °C, sugar contents in non-senescent leaves were higher than at a warm temperature, but dependent on the accession, either sugars did not accumulate or their contents decreased in old leaves. In A. alpina plants grown in their natural habitat in the Alps, sugar contents declined with leaf age. Growth at a cold temperature slightly delayed senescence in A. alpina. In both warm and cold conditions, an external glucose supply accelerated senescence, but natural variation was found in this response. In conclusion, sugar accumulation under warm conditions could accelerate leaf senescence in A. alpina plants, but genotype-specific responses and interactions with growth temperature are likely to influence senescence under natural conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1744-7909.2012.01145.x | DOI Listing |
Foods
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.
View Article and Find Full Text PDFAbscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!