A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol. | LitMetric

AI Article Synopsis

  • The study introduces a new computer-based protocol for predicting how mutations affect protein binding by simulating conformational changes and calculating free energy variations.
  • The protocol was tested on 173 mutations across 7 protein complexes, revealing that combining two prediction methods led to identifying mutations that enhanced binding, with a success rate of 45%.
  • For more complex mutations requiring multiple base changes, the success rate rose to 63%, and the protocol successfully detected 89% of significant mutation hotspots in 56 alanine scanning tests.

Article Abstract

The implementation of a structure based virtual affinity maturation protocol and evaluation of its predictivity are presented. The in silico protocol is based on conformational sampling of the interface residues (using the Dead End Elimination/A* algorithm), followed by the estimation of the change of free energy of binding due to a point mutation, applying MM/PBSA calculations. Several implementations of the protocol have been evaluated for 173 mutations in 7 different protein complexes for which experimental data were available: the use of the Boltzamnn averaged predictor based on the free energy of binding (ΔΔG(*)) combined with the one based on its polar component only (ΔΔE(pol*)) led to the proposal of a subset of mutations out of which 45% would have successfully enhanced the binding. When focusing on those mutations that are less likely to be introduced by natural in vivo maturation methods (99 mutations with at least two base changes in the codon), the success rate is increased to 63%. In another evaluation, focusing on 56 alanine scanning mutations, the in silico protocol was able to detect 89% of the hot-spots.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci3001474DOI Listing

Publication Analysis

Top Keywords

virtual affinity
8
affinity maturation
8
maturation protocol
8
silico protocol
8
free energy
8
energy binding
8
protocol
5
mutations
5
engineering protein
4
protein therapeutics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!