The purpose of this study was to determine whether everolimus, a rapamycin derivative, might significantly enhance the cytotoxicity of gemcitabine, an antitumor drug, in two human bladder-cancer cell lines. Human bladder-cancer T24 and 5637 cells were incubated with gemcitabine and everolimus in a range of concentrations either alone or in combination for 72 h. Flow cytometry, comet assay, MTT method and optical microscopy were used to assess cell proliferation, cell cycle, DNA damage, and morphological alterations. Gemcitabine exerted an inhibitory effect on T24 and 5637 cell proliferation, in a concentration-dependent manner. Everolimus significantly reduced proliferation of 5637 bladder cancer cells (IC₃₀) at 1 μM), whereas T24 demonstrated marked resistance to everolimus treatment. A significant antiproliferative effect was obtained combining gemcitabine (100 nM) with everolimus (0.05-2 μM) with an arrest of cell cycle at S phase. Furthermore, an increase in frequency of DNA damage, apoptotic bodies, and apoptotic cells was observed when T24 and 5637 cancer cells were treated simultaneously with both drugs. Data show that in vitro combination produced a more potent antiproliferative effect when compared with single drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2012.690325DOI Listing

Publication Analysis

Top Keywords

t24 5637
12
bladder-cancer cell
8
cell lines
8
human bladder-cancer
8
cell proliferation
8
cell cycle
8
dna damage
8
cancer cells
8
everolimus
6
cell
6

Similar Publications

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA.

Int Immunopharmacol

January 2025

Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China. Electronic address:

Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor that begins in the cells of the bladder, characterized by poor cell differentiation and strong invasion capacity, with a high incidence rate. Identifying key molecules that enhance BC cells' cisplatin sensitivity can help improve the clinical efficacy of BC treatment. Hence, this study aimed to determine the expression level of long non-coding RNA (lncRNA) ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 Antisense RNA 1 () in BC and explore its related mechanism underlying the amplification of cisplatin sensitivity.

View Article and Find Full Text PDF

N6-methyladenosine-modified SRD5A3, identified by IGF2BP3, sustains cisplatin resistance in bladder cancer.

Hum Cell

December 2024

Department of Radiotherapy, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, No. 78 Hengzhigang, Yuexiu District, Guangzhou, 510095, China.

Resistance to cisplatin-based chemotherapy limits the clinical benefit to some bladder cancer patients, and understanding the epigenetic regulation mechanism of cisplatin (CDDP) resistance in bladder cancer from the perspective of N6-methyladenosine (m6A) modification may optimize CDDP-based treatments. The study identified SRD5A3 as an oncogene for bladder cancer and stabilized by a m6A reader, IGF2BP3, to sustain CDDP resistance. Our results revealed that the expression of SRD5A3 was elevated in human bladder cancer tissues and cell lines, and this elevation was more evident in CDDP-resistant T24 and 5637 cells.

View Article and Find Full Text PDF
Article Synopsis
  • LncRNAs play an important role in bladder cancer (BLCA), with this study focusing on how ferroptosis-related lncRNAs (DEFRlncRNAs) impact tumor growth and patient outcomes.
  • Researchers identified an 18-lncRNA signature that predicts patient prognosis and showed that altering the expression of specific lncRNAs like AL355353.2 and AL136084.3 affects cancer cell death in lab experiments.
  • The study found that AL136084.3 interacts with the protein NUPR1, suggesting a potential link in regulating cancer progression and providing insight into possible therapeutic targets.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!