Ac34 and its homologs are highly conserved in all sequenced alphabaculoviruses. In this paper, we show that ac34 transcripts were detected from 6 to 48 h postinfection (p.i.) in Autographa californica nucleopolyhedrovirus (AcMNPV)-infected Sf9 cells. Ac34 localized to both the cytoplasm and the nuclei of infected cells but was not a viral structural protein. To determine the function of ac34 in the viral life cycle, an ac34 knockout AcMNPV (vAc34KO) was constructed. Compared with wild-type and repair viruses, vAc34KO exhibited an approximately 100-fold reduction in infectious virus production. Further investigations showed that the ac34 deletion did not affect the replication of viral DNA, polyhedron formation, or nucleocapsid assembly but delayed the expression of late genes, such as vp39, 38k, and p6.9. Bioassays revealed that vAc34KO was unable to establish a fatal infection in Trichoplusia ni larvae via per os inoculation. Few infectious progeny viruses were detected in the hemolymph of the infected larvae, indicating that the replication of vAc34KO was attenuated. These results suggest that Ac34 is an activator protein that promotes late gene expression and is essential for the pathogenicity of AcMNPV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457258 | PMC |
http://dx.doi.org/10.1128/JVI.00779-12 | DOI Listing |
J Virol
May 2024
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2024
Centre de Recherche en Sciences Pharmaceutiques CRSP, Constantine, Algeria.
Inhibition of human mitochondrial peptide deformylase (HsPDF) plays a major role in reducing growth, proliferation, and cellular cancer survival. In this work, a series of 32 actinonin derivatives for HsPDF (PDB: 3G5K) inhibitor's anticancer activity was computationally analyzed for the first time, using an study considering 2D-QSAR modeling, and molecular docking studies, and validated by molecular dynamics and ADMET properties. The results of multilinear regression (MLR) and artificial neural networks (ANN) statistical analysis reveal a good correlation between pIC50 activity and the seven (7) descriptors.
View Article and Find Full Text PDFVirus Res
October 2021
State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China. Electronic address:
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) assembles its nucleocapsids and occlusion-derived virions (ODVs) in the nucleus, which requires AcMNPV regulation for viral structural proteins to accumulate in the nucleus during its replication in cells. It is generally accepted that the nuclear import receptor plays a predominant role in this process. CRM1 is a nuclear export receptor that forms an export complex with its cargo protein to exit the nucleus.
View Article and Find Full Text PDFVirus Res
July 2021
State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
Autographa californica multiple nucleopolyhedrovirus orf34 (ac34) is one of the unique genes of alphabaculoviruses. For successful alphabaculovirus replication, viral proteins must be transported to the nucleus. Our previous study showed that the nuclear localization of Ac34 was required for optimal production of budded virions.
View Article and Find Full Text PDFNat Rev Microbiol
January 2021
Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!