A panel of 133 allergens derived from 28 different sources, including fungi, trees, grasses, weeds, and indoor allergens, was surveyed utilizing prediction of HLA class II-binding peptides and ELISPOT assays with PBMC from allergic donors, resulting in the identification of 257 T cell epitopes. More than 90% of the epitopes were novel, and for 14 allergen sources were the first ever identified to our knowledge. The epitopes identified in the different allergen sources summed up to a variable fraction of the total extract response. In cases of allergens in which the identified T cell epitopes accounted for a minor fraction of the extract response, fewer known protein sequences were available, suggesting that for low epitope coverage allergen sources, additional allergen proteins remain to be identified. IL-5 and IFN-γ responses were measured as prototype Th2 and Th1 responses, respectively. Whereas in some cases (e.g., orchard grass, Alternaria, cypress, and Russian thistle) IL-5 production greatly exceeded IFN-γ, in others (e.g., Aspergillus, Penicillum, and alder) the production of IFN-γ exceeded IL-5. Thus, different allergen sources are associated with variable polarization of the responding T cells. The present study represents the most comprehensive survey to date of human allergen-derived T cell epitopes. These epitopes might be used to characterize T cell phenotype/T cell plasticity as a function of seasonality, or as a result of specific immunotherapy treatment or varying disease severity (asthma or rhinitis).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411923 | PMC |
http://dx.doi.org/10.4049/jimmunol.1200850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!