The NCgl1221 gene, which encodes a mechanosensitive channel, has been reported to be critically involved in glutamate (Glu) overproduction by Corynebacterium glutamicum, but direct evidence of Glu excretion through this channel has not yet been provided. In this study, by electrophysiological methods, we found direct evidence of Glu excretion through this channel by passive diffusion. We found that the introduction into Phe-producing Escherichia coli of mutant NCgl1221 genes that induce Glu overproduction by C. glutamicum improved productivity. This suggests a low-substrate preference of this channel, indicates its potential as a versatile exporter, and more broadly, indicates the potential of exporter engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.120366 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
The efficient production of L-glutamate is dependent on the product's rapid efflux, hence researchers have recently concentrated on artificially modifying its transport system and cell membrane wall structure. Considering the unique composition and structure of the cell wall of , we investigated the effects of CmpLs on L-glutamate synthesis and transport in SCgGC7, a constitutive L-glutamate efflux strain. First, the knockout strains of CmpLs were constructed, and it was confirmed that the deletion of CmpL1 and CmpL4 significantly improved the performance of L-glutamate producers.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea.
Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from , a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!