We present a generalization of mean-centered partial least squares correlation called multiblock barycentric discriminant analysis (MUBADA) that integrates multiple regions of interest (ROIs) to analyze functional brain images of cerebral blood flow or metabolism obtained with SPECT or PET. To illustrate MUBADA we analyzed data from 104 participants comprising Alzheimer's disease (AD) patients, frontotemporal dementia (FTD) patients, and elderly normal controls. Brain images were analyzed via 28 ROIs (59,845 voxels) selected for clinical relevance. This is a discriminant analysis (DA) question with several blocks (one per ROI) and with more variables than observations, a configuration that precludes using DA. MUBADA revealed two factors explaining 74% and 26% of the total variance: Factor 1 isolated FTD, and Factor 2 isolated AD. A random effects model correctly classified 64% (chance = 33%) of "new" participants (p < 0.0001). MUBADA identified ROIs that best discriminated groups: ROIs separating FTD were bilateral inferior, middle frontal, left inferior, and middle temporal gyri, while ROIs separating AD were bilateral thalamus, inferior parietal gyrus, inferior temporal gyrus, left precuneus, middle frontal, and middle temporal gyri. MUBADA classified participants at levels comparable to standard methods (i.e., SVM, PCA-LDA, and PLS-DA) but provided information (e.g., discriminative ROIs and voxels) not easily accessible to these methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725397PMC
http://dx.doi.org/10.3233/JAD-2012-112111DOI Listing

Publication Analysis

Top Keywords

discriminant analysis
12
cerebral blood
8
blood flow
8
alzheimer's disease
8
frontotemporal dementia
8
barycentric discriminant
8
analysis mubada
8
brain images
8
factor isolated
8
rois separating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!