Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy.

Am J Physiol Cell Physiol

Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.

Published: September 2012

Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468343PMC
http://dx.doi.org/10.1152/ajpcell.00057.2012DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
has1 has2
8
skeletal muscle
8
muscle
7
acid has1
4
has2 upregulated
4
upregulated muscle
4
muscle hypertrophy
4
hypertrophy hyaluronic
4
acid component
4

Similar Publications

Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.

View Article and Find Full Text PDF

Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.

Int J Biol Macromol

January 2025

Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:

Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.

View Article and Find Full Text PDF

CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out.

Colloids Surf B Biointerfaces

January 2025

Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors  www.springer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!