NF-κB signaling pathways: role in nervous system physiology and pathology.

Neuroscientist

Neuronal Signaling Unit, Dep. Ciencies Mediques Basiques, Facultat de Medicina, Universitat de Lleida-IRBLLEIDA, Lleida, Spain.

Published: April 2013

Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor-κB (NF-κB). The activity of this pathway leads to the nuclear translocation of the NF-κB transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-κB transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1073858412444007DOI Listing

Publication Analysis

Top Keywords

nervous system
8
cell survival
8
nf-κb transcription
8
transcription factors
8
nf-κb
4
nf-κb signaling
4
signaling pathways
4
pathways role
4
role nervous
4
system physiology
4

Similar Publications

Objective: This study examines whether cross-education training of the healthy limb promotes cross-transfer through central nervous system stimulation, enhancing the function, kinematic parameters, dynamic balance, and plantar pressure of the affected knee joint in patients recovering from postoperative anterior cruciate ligament reconstruction (ACLR).

Methods: Forty anterior cruciate ligament reconstruction (ACLR) patients, 5-6 weeks postoperatively, were included and randomly assigned to either an experimental group (n = 20) or a control group (n = 20). The experimental group participated in six weeks of cross-education (CE) training in addition to conventional rehabilitation, while the control group received only conventional rehabilitation.

View Article and Find Full Text PDF

This study investigated the effect of surgery on the prognosis of patients with primary central nervous system lymphoma (PCNSL) using data from the surveillance, epidemiology, and end results (SEER) database. A cohort of 5932 patients was analyzed, with 1466 undergoing surgical intervention (780 subtotal resection (STR), 686 gross total resection (GTR)) and 4466 receiving no surgery or biopsy only. The median age of the study population was 61.

View Article and Find Full Text PDF

Sympathetic nerves regulate nearly all human organs. Their peripheral nerves are present in tumor tissue. Activation of the sympathetic nervous system promotes malignant transformation in several cancers.

View Article and Find Full Text PDF

Kidney stones, a common urological disease, may involve the brain-kidney axis in their formation, though the specific mechanism remains unclear. This study aimed to investigate the effects of blue light on relevant metabolic indicators and oxidative stress status in rats with kidney stones through the brain-kidney axis. A rat model of kidney stones was established by administering 1% ethylene glycol and 2% ammonium chloride.

View Article and Find Full Text PDF

Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of "axon reorientation" and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!