Silicon amendments to soil have resulted in a decrease of diseases caused by several soilborne pathogens affecting a wide number of crops. This study evaluated the physiological and biochemical mechanisms that may have increased resistance of banana to Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense, after treatment with silicon (Si) amendment. Plants from the Grand Nain (resistant to F. oxysporum f. sp. cubense) and "Maçã" (susceptible to F. oxysporum f. sp. cubense) were grown in plastic pots amended with Si at 0 or 0.39 g/kg of soil (-Si or +Si, respectively) and inoculated with race 1 of F. oxysporum f. sp. cubense. Relative lesion length (RLL) and asymptomatic fungal colonization in tissue (AFCT) were evaluated at 40 days after inoculation. Root samples were collected at different times after inoculation with F. oxysporum f. sp. cubense to determine the level of lipid peroxidation, expressed as equivalents of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), pigments (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids), total soluble phenolics (TSP), and lignin-thioglycolic acid (LTGA) derivatives; the activities of the enzymes phenylalanine ammonia-lyases glucanases (PALs), peroxidases (POXs), polyphenoloxidases (PPOs), β-1,3-glucanases (GLUs), and chitinases (CHIs); and Si concentration in roots. Root Si concentration was significantly increased by 35.3% for the +Si treatment compared with the -Si treatment. For Grand Nain, the root Si concentration was significantly increased by 12.8% compared with "Maçã." Plants from Grand Nain and "Maçã" in the +Si treatment showed significant reductions of 40.0 and 57.2%, respectively, for RLL compared with the -Si treatment. For the AFCT, there was a significant reduction of 18.5% in the +Si treatment compared with the -Si treatment. The concentration of MDA significantly decreased for plants from Grand Nain and "Maçã" supplied with Si compared with the -Si treatment while the concentrations of H(2)O(2) on roots and pigments on leaves significantly increased. The concentrations of TSP and LTGA derivatives as well as the PALs, PPOs, POXs, GLUs, and CHIs activities significantly increased on roots of plants from Grand Nain and "Maçã" from the +Si treatment compared with the -Si treatment. Results of this study suggest that the symptoms of Fusarium wilt on roots of banana plants supplied with Si decreased due to an increase in the concentrations of H(2)O(2), TSP, and LTGA derivatives and greater activities of PALs, PPOs, POXs, GLUs, and CHIs.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-02-12-0037-RDOI Listing

Publication Analysis

Top Keywords

oxysporum cubense
20
grand nain
20
compared -si
20
-si treatment
20
plants grand
16
+si treatment
16
fusarium wilt
12
ltga derivatives
12
treatment compared
12
nain "maçã"
12

Similar Publications

Trichoderma virens XZ11-1 producing siderophores inhibits the infection of Fusarium oxysporum and promotes plant growth in banana plants.

Microb Cell Fact

January 2025

School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.

View Article and Find Full Text PDF

Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from f. sp. .

Plants (Basel)

December 2024

Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.

View Article and Find Full Text PDF

Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.

View Article and Find Full Text PDF

wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!