The seed-borne mycoflora of sorghum and foxtail millet collected from different growing areas in South Korea were isolated and taxonomically identified using dry inspection, standard blotter and the agar plate method. We investigated the in vitro and in vivo germination rates of disinfected and non-disinfected seeds of sorghum and foxtail millet using sterilized and unsterilized soil. The percent recovery of seed-borne mycoflora from the seed components of sorghum and foxtail millet seeds was determined and an infection experiment using the dominant species was evaluated for seedling emergence and mortality. A higher number of seed-borne fungi was observed in sorghum compared to that of foxtail millet. Eighteen fungal genera with 34 fungal species were identified from the seeds of sorghum and 13 genera with 22 species were identified from the seeds of foxtail millet. Five dominant species such as Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme and Phoma sp. were recorded as seed-borne mycoflora in sorghum and 4 dominant species (Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme) were observed in foxtail millet. The in vitro and in vivo germination rates were higher using disinfected seeds and sterilized soil. More seed-borne fungi were recovered from the pericarp compared to the endosperm and seed embryo. The percent recovery of seed-borne fungi ranged from 2.22% to 60.0%, and Alternaria alternata, Curvularia lunata and 4 species of Fusarium were isolated from the endosperm and embryo of sorghum and foxtail millet. Inoculation of the dominant seed-borne fungi showed considerable mortality of seedlings. All the transmitted seed-borne fungi might well be a primary source of infection of sorghum and foxtail millet crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385107 | PMC |
http://dx.doi.org/10.5941/MYCO.2011.39.3.206 | DOI Listing |
Plant Genome
March 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis).
View Article and Find Full Text PDFJ Exp Bot
January 2025
Noble Research Institute, Ardmore, OK 73401, USA.
Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs.
View Article and Find Full Text PDFPlant Cell
January 2025
Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C).
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
While the digestibility of millet starch has been studied considerably, the effects of cooking on starch digestibility in millet remain insufficiently understood. This study investigated the effects of cooking on in vitro enzymatic starch digestion in eight cooked millet flour cultivars by seeking its correlations with the changes in composition (moisture, total starch, protein, lipids, total dietary fiber, and phenolics), structure, and physicochemical properties. Compared to raw flours, cooked flours had a similar content of total starch and protein, a lower content of moisture, lipids, and total phenolic content, and a higher content of total dietary fiber.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!