Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We aimed to investigate the osteogenic properties of bone marrow stromal cell (BMSC)-loaded biomimetic constructs composed of hydroxyapatite (HA), with or without in vitro cell-derived extracellular matrix (HA-ECM), and to assess the cellular components of the elicited foreign body reaction. HA-ECM constructs were produced by adult rat dermal fibroblasts cultured on top of synthetic HA microparticles. Rat calvarial critical-sized defects (8 mm) were created and treated with the generated HA-ECM constructs or HA microparticles, alone or combined with green fluorescent protein (GFP)-expressing BMSCs. The new bone formation and the local cellular inflammatory response (macrophages, neutrophils, lymphocytes, eosinophils and PCNA-index) were assessed by histomorphometry and immunohistochemistry at 2 and 12 weeks postoperatively. In addition, the BMSCs' survival and engraftment were checked. The largest volume of the newly formed bone was found in defects treated with HA-ECM constructs combined with BMSCs (p < 0.05). Moreover, the implanted BMSCs modulated the local inflammatory response, demonstrated by either a significant increase (HA vs HA + BMSCs) or decrease (HA-ECM vs HA-ECM + BMSCs) of the inflammatory cell number. No donor BMSCs were detected at the site of implantation or in the host bone marrow at 2 or 12 weeks postoperatively. In conclusion, the treatment of critical-sized calvarial defects with the BMSC-loaded biomimetic constructs has significantly enhanced bone repair by modulating the foreign body reaction. Our findings highlight the implications of BMSCs in the regulation of the foreign body reaction triggered by tissue-engineered constructs, proving a higher efficiency for the BMSC combination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.1574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!