Bacteriophages capable of lysing Yersinia pestis and Yersinia pseudotuberculosis: efficiency of plating tests and identification of receptors in escherichia coli K-12.

Adv Exp Med Biol

Department of Emerging Bacterial Infections, Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Room 3A03, Silver Spring, MD, USA.

Published: September 2012

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-3561-7_16DOI Listing

Publication Analysis

Top Keywords

bacteriophages capable
4
capable lysing
4
lysing yersinia
4
yersinia pestis
4
pestis yersinia
4
yersinia pseudotuberculosis
4
pseudotuberculosis efficiency
4
efficiency plating
4
plating tests
4
tests identification
4

Similar Publications

Bacteriophages, known for their ability to kill bacteria, are hampered in their effectiveness because bacteria are able to rapidly develop resistance, thereby posing a significant challenge for the efficacy of phage therapy. The impact of evolutionary trajectories on the long-term success of phage therapy remains largely unclear. Herein, we conducted evolutionary experiments, genomic analysis, and CRISPR-mediated gene editing, to illustrate the evolutionary trajectory occurring between phages and their hosts.

View Article and Find Full Text PDF

Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors.

Extremophiles

December 2024

Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil.

Since prophages can play a multifaceted role in bacterial evolution, this study aims to characterize the virome of Rummeliibacillus stabekisii, a bacterium isolated from different environments, including Antarctic soil and NASA spacecraft floors. From the analyses, it was found that the Antarctic strain, PP9, had the largest number of prophages, including intact ones, indicating potential benefits for survival in adverse conditions. In contrast, other strains harbored predominantly degenerate prophages, suggesting a dynamic process of gene gain and loss during evolution.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) represents a critical public health issue that requiring immediate action. Wild halophytic plants can be the solution for the AMR crisis because they harbor unique endophytes capable of producing potent antimicrobial metabolites. This study aimed at identifying promising and antimicrobial metabolites produced by endophytic/epiphytic bacteria recovered from the wild Bassia scoparia plant.

View Article and Find Full Text PDF

Unveiling the Sorption Properties of Graphene Oxide-M13 Bacteriophage Aerogels for Advanced Sensing and Environmental Applications.

ACS Appl Mater Interfaces

December 2024

School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS).

View Article and Find Full Text PDF

The rising tide of bacterial drug resistance has sparked renewed interest in bacteriophages, the natural predators of bacteria. Our study highlights IME-EFm1, a Caudoviricetes bacteriophage specifically targeting Enterococcus faecium. Through our investigations, we identified that the gene IME-EFm1-ORF24 encodes an amidase, referred to as gp24, with promising lytic capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!