Profiling surface glycans on live cells and tissues using quantum dot-lectin nanoconjugates.

Lab Chip

Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Deajeon 305-764, South Korea.

Published: September 2012

The surface of mammalian cells is densely coated with complex glycans, which are directly involved in cell-cell or cell-protein interactions that trigger various biological responses. Here, we present a novel glycomics approach that uses quantum dot (Qdot)-lectin nanoconjugates to interrogate the surface glycans of tissues and patterned cells. Our approach allows highly sensitive in situ monitoring of specific lectin-glycan interactions and quantitative information on surface glycans for each examined cell line and tissue. The results clearly show significant changes in glycosylation for each cell line and tissue sample. We expect that these results will be applicable in cancer diagnostics and promote the development of new analytical tools for glycomics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc40248cDOI Listing

Publication Analysis

Top Keywords

surface glycans
12
cell tissue
8
profiling surface
4
glycans
4
glycans live
4
live cells
4
cells tissues
4
tissues quantum
4
quantum dot-lectin
4
dot-lectin nanoconjugates
4

Similar Publications

Snake venom galactoside-binding lectin from Bothrops jararacussu: Special role in leukocytes activation and function.

Int J Biol Macromol

January 2025

Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:

Article Synopsis
  • SVgalLs are toxins from Bothrops snake venoms that bind to galactose-containing carbohydrates in a calcium-dependent way.
  • BjcuL, a key C-type lectin from Bothrops jararacussu venom, has been extensively studied for its role in inflammation by activating immune cell functions.
  • The review discusses the current knowledge on snake venom lectins' effects in pathophysiology and outlines future research directions, including advanced technologies for discovering new therapeutic targets.
View Article and Find Full Text PDF

To enhance the surface hydrophobicity and emulsification capacity of silica colloidal particles, a natural surface modification of soy hull polysaccharides (SHP) was conducted. Here, the effects of pH and ionic strength on the stability, microstructure and rheological properties of concentrated Pickering emulsions were investigated. Experimental results show emulsions gelled at pH 2, with increasing pH (2-10), SiO-SHP absolute zeta potential (from -19.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity.

Molecules

December 2024

Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland.

The purpose of this research was to investigate the prebiotic effects of different fractions of pectin-derived oligosaccharides (POSs) from apple pomace (AP) in relation to their molecular weight (MW), structure, and composition. Enzymatic treatment of the apple pomace resulted in high-molecular-weight arabinans and rhamnogalacturonans (MW 30-100 kDa, MW 10-30 kDa), as well as oligomeric fractions with molecular weights of less than 10 kDa, consisting mainly of homogalacturonan. The biological potential of the POSs against various lactobacilli and bifidobacteria was evaluated.

View Article and Find Full Text PDF

In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!