This paper describes a new technique to mitigate the effect of beam steering on CARS measurements in turbulent, variable density environments. The new approach combines planar BOXCARS phase-matching with elliptical shaping of one of the beams to generate a signal robust to beam steering, while keeping the same spatial resolution. Numerical and experimental results are provided to demonstrate the effectiveness of this approach. One experiment investigates the effect of beam shaping in the presence of a controlled and well quantified displacement of the beams at the focal plane. Another experiment, more qualitative, proves the effectiveness of the technique in the presence of severe beam steering due to turbulence.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.51.004730DOI Listing

Publication Analysis

Top Keywords

beam steering
12
beam shaping
8
cars measurements
8
measurements turbulent
8
beam
5
shaping cars
4
turbulent environments
4
environments paper
4
paper describes
4
describes technique
4

Similar Publications

Intelligent reflecting surfaces (IRS) are valuable tools for enhancing the intelligence of the propagation environment. They have the ability to direct EM Waves to a specific user through beamforming. A significant number of passive elements are integrated into metasurfaces, allowing for their incorporation onto various surfaces such as walls and buildings.

View Article and Find Full Text PDF

Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.

View Article and Find Full Text PDF

Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments.

Struct Dyn

November 2024

Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns.

View Article and Find Full Text PDF

In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses.

View Article and Find Full Text PDF

A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons.

Med Phys

December 2024

Dosimetry for Radiotherapy, Physikalisch-Technische Bundesanstalt, Braunschweig, 38116, Germany.

Background: FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!