Symmetrically and unsymmetrically electron-donor-substituted octacyano[4]dendralenes were synthesized and their opto-electronic properties investigated by UV/vis spectroscopy, electrochemical measurements (cyclic voltammetry (CV) and rotating disk voltammetry (RDV)), and electron paramagnetic resonance (EPR) spectroscopy. These nonplanar push-pull chromophores are potent electron acceptors, featuring potentials for first reversible electron uptake around at -0.1 V (vs Fc(+)/Fc, in CH2Cl2 + 0.1 M n-Bu4NPF6) and, in one case, a remarkably small HOMO-LUMO gap (ΔE = 0.68 V). EPR measurements gave well-resolved spectra after one-electron reduction of the octacyano[4]dendralenes, whereas the one-electron oxidized species could not be detected in all cases. Investigations of the radical anions of related donor-substituted 1,1,4,4-tetracyanobuta-1,3-diene derivatives revealed electron localization at one 1,1-dicyanovinyl (DCV) moiety, in contrast to predictions by density functional theory (DFT) calculations. The particular factors leading to the charge distribution in the electron-accepting domains of the tetracyano and octacyano chromophores are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo301194yDOI Listing

Publication Analysis

Top Keywords

donor-substituted octacyano[4]dendralenes
4
octacyano[4]dendralenes investigation
4
investigation π-electron
4
π-electron delocalization
4
delocalization radical
4
radical ions
4
ions symmetrically
4
symmetrically unsymmetrically
4
unsymmetrically electron-donor-substituted
4
electron-donor-substituted octacyano[4]dendralenes
4

Similar Publications

Symmetrically and unsymmetrically electron-donor-substituted octacyano[4]dendralenes were synthesized and their opto-electronic properties investigated by UV/vis spectroscopy, electrochemical measurements (cyclic voltammetry (CV) and rotating disk voltammetry (RDV)), and electron paramagnetic resonance (EPR) spectroscopy. These nonplanar push-pull chromophores are potent electron acceptors, featuring potentials for first reversible electron uptake around at -0.1 V (vs Fc(+)/Fc, in CH2Cl2 + 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!