Purpose: We investigated the DNA damage response (DDR) of fetal neural stem and progenitor cells (NSPC), since exposure to ionizing radiation can severely impair the brain development.
Material And Methods: We compared apoptosis induction in the dorsal telencephalon and the lateral ganglionic eminences (LGE) of mouse embryos after an in utero irradiation. We used two thymidine analogs, together with the physical position of nuclei within brain structures, to determine the fate of irradiated NSPC.
Results: NSPC did not activate an apparent protein 21(p21)- dependent G1/S checkpoint within the LGE as their counterparts within the dorsal telencephalon. However, the levels of radiation-induced apoptosis differed between the two telencephalic regions, due to the high radiation sensitivity of intermediate progenitors of the LGE. Besides radial glia cells, that function as neural stem cells, were more resistant and were reoriented toward self-renewing within hours following irradiation.
Conclusions: The lack of the p21-dependent-cell cycle arrest at the G1/S transition appears to be a general feature of NSPC in the developing brain. However, we found variation of radiation-response in function of the types of NSPC. Factors involved in DDR and those involved in the regulation of neurogenesis are intricately linked in determining the cell fate after irradiations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09553002.2012.710927 | DOI Listing |
Cytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ghana, P.O. Box 134, Legon-Accra, Ghana.
Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.
Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.
Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!